

Building an Integrated Static Reservoir Model

5-day Course

Prepared by International Reservoir Technologies Lakewood, Colorado

http://www.irt-inc.com/

Agenda

<u>Day 1</u>

Morning – Introduction and Overview Afternoon – Well Data Prep & QC Using Cores - exercises (1, 2)

<u>Day 2</u>

Morning – Core, Pressure and Petrophysical Data Prep and Analysis – exercises (3, 4) Afternoon – Contact Analysis and Flow Unit Definition – exercises (5, 6)

<u>Day 3</u>

Morning – Preparing Horizon & Fault Data – exercises (7, 8) Afternoon – Preparing the Structural Framework – exercise (9)

Day 4

Morning – Building the Stratigraphic Framework & Geocellular Gridding - exercise (10) Afternoon – Facies Modeling – exercise (11)

Day 5

Morning – Petrophysical Modeling – exercise (12) Afternoon – Selecting Realizations and Upscaling – exercise (13)

<u>Goal</u>

Provide an asset team with static modeling background, data preparation requirements, mentoring, and problem-solving opportunities to guide the team through building geocellular model for use in reservoir simulator

Topics Covered

Introduction – Static Modeling Course

- Static Modeling Course Objectives
- Model Building Workflow
- Reservoir Modeling and Reservoir Management Plans
 - Field Life Cycle
 - Reservoir Depletion Plans
 - Role of Integration
- 10 Golden Rules for Flow Modeling
- Use and Misuse of Reservoir Modeling
- Cost of Building Reservoir Models
- Benefits of Integrated Model Studies
- Field Case Study Background

∠ Checklist Exercise

Well Data and QC Using Cores

- Types of Well Data and How They are Utilized
- Data Verification and Conditioning
- Geological data
 - o Data Prep
 - o Assimilation/Interpretation
 - Field Analogs
- Core Description
 - Inventory of available data
 - Digital or manual description
 - o How to capture data
 - o Value of core description
 - o Objectives/focus
 - o QC
 - Examples of failed QC (tops, structure, depo environment, wire-line, petro)
 - o Observations and documentation
 - Shift to wire-line logs
 - Qualitative data input
 - Importance of scale
- \bigstar Exercise 1 and 2
 - Core description and core photos
 - Core to wire-line data shift

Core, Pressure and Petrophysical Data Prep and Analysis

- Objective
 - To define an optimized layering scheme
- Data Integration
 - Are all the data available and QC'd?
- Facies and Core Data
 - Core Data Prep
 - Simplify without loss of heterogeneity
 - Examples of Display and Use
 - ∠ Exercise 3 Teapot dome
 - Plot MDT pressure data
- Input Data Required
 - Core Plug Data
 - Convert analysis to reservoir pressures
 - Data Preparation
 - o Edit
 - o Shift
 - o Environmental Corrections
 - o Normalization
- Calculation Methods
 - o Porosity f
 - o Permeability k
 - Water Saturation Sw
- Analysis, QC, and Data Conditioning
 - Core porosity, permeability and Sw
- Facies model considerations
 - Wireline predictability
 - o Facies relationship to reservoir quality
 - Vertical and lateral detail
 - o Data Revisions
- Cut-offs

 \bowtie Exercise 4 - Modify parameters in Archie's Equation to estimate water saturation (Sw) and chart the sensitivity to input data

Contact Analysis and Flow Unit Definition

- Contact Analysis
 - Core Data Oil Stain
 - Open and cased hole logs
 - o RFT/MDT
 - o Production history Test Data
 - ∠ Exercise 5 Teapot dome
 - Pick contact from wire-line cross-section
 - Determine compartments
 - Map influx
- Get the Regional Picture
 - How does the big picture impact my model?
- Reservoir Layering
 - Lithology or sequence based stratigraphy?
 - How much detail?
 - How should facies impact layering?
 - $\mathbb{Z}_{\mathbb{D}}$ Exercise 6 Teapot dome
 - Develop layering scheme based on wire-line/MDT, core, etc.

Preparing Horizon and Fault Data

- Fault Picks in Seismic
 - o Procedures
 - o Methods
 - o Data enhancement
 - Coherency
 - Spectral Decomposition
 - Curvature
 - o QC
- Fault Picks in Geology
 - o Procedures
 - o Methods
 - o QC
- Linking seismic and geological faults
 - Seismic Horizon Interpretation
 - Methods and areal coverage
- AOI

٠

- Mapping
 - o Grid cell size
- External data
 - o Dip meter

- o FMI (full-borehole micro imager)
- o UBI (ultrasonic borehole imager)
- o Core
- DSI (dipole sonic imager)
- o SCAT (statistical curvature analysis technique)
- o Satellite imagery
- Topographic data
- o Paleontology/Biostratigraphy
- ∠ Exercises 7 and 8
 - ∠ Locate Faults
 - Coordinate all data sets to yield a consistent fault
 - A Overpost seismic outline on field using Google Earth
 - Identify Surface Faulting

Preparing the Structural Framework

- Fault model overview
 - Structural interpretation/style timing
 - Reservoir discontinuities
 - o Grid layout and orientation
- Structural styles overview
- Fault framework principles
 - Fit for purpose fault framework
 - Develop only one structural model
 - Model contains all identifiable faults that offset the reservoir interval
 - Stratigraphic limitations treated as faults for simulation model
 - o Faults impacting reservoir intervals and fluid flow identified
 - o Contacts honored
 - Does the hydrocarbon column seal laterally through a combination of dip/fault/stratigraphic pinchout edges ?
 - Well fault cuts honored
 - Gridding considerations
- Framework construction
 - Working in time and depth domains
 - o Workflow
 - Import
 - Build fault planes and QC
 - Feedback loop to structural interpretation
 - Intersection and truncations
 - Edit tipout polygons
- Where things could go wrong
- Structural Uncertainty
- Import Data to modeling package
 - Seismic (sticks, polygons, centerlines, planes)

- o Well picks
- o QC
- Fault Treatment
 - Vertical vs. Inclined (What are the objectives?)
 - o Special Consideration for Reverse Faulting
 - o Salt/shale diapirs
- Fault gridding approach
 - o Pillar Approach (Petrel/Old RMS)
 - Fault Plane/Block Approach (New RMS/EarthVision)
 - o GOCAD/SKUA
 - Fault Model QC
 - o Truncations/intersections/well ties/tip-out polygons/unconformities
- 🖉 Exercise 9
 - Determine the truncation order of intersecting faults

Building the Stratigraphic Framework & Geocellular Gridding

- Recap of course topics to date
- Recap of data for field model
- Building Layering into the Static Model
 - Strategy for using mapped horizons and isochores
 - Different scales of Layering
 - Modeler's controls over layering
 - Feedback of horizon to seismic and geological cross-sections
 - Exercise using what is known about the reservoir
- Geocellular Gridding
 - Elements and definitions of the geocellular grid
 - o Geologic vs. Simulation grid-building workflow & strategy
 - Working within a cell budget
 - ∠ Exercise 10 estimating cell size, grid size
 - o Methods for handling faults in the geocellular grid
 - Keeping scale in mind

Facies Modeling

- Recap of facies data
- Goal(s) of facies modeling
- Facies Modeling Workflow
 - o Blocking
 - o Data analysis
 - o Define trends vertical and lateral
 - o Variograms
 - Deterministic or simulation
- Facies Modeling Options
 - o Interpolation
 - o Deterministic
 - o Object based -
 - Geobody shape, dimension, and orientation
 - Capture vertical and lateral baffles/barriers
 - o Indicator
 - Capture baffles
 - o Belts or trends
 - o Combination
 - o Co-simulation, co-located co-simulation
- 🖄 Exercise 11 propose a facies model at Teapot Dome

Petrophysical Property Modeling

- Recap of course topics to date
- Introduction to property modeling
 - Which properties are modeled?
 - Why properties are modeled at geologic scale
 - Why model each facies and interval separately?
 - ▲ Exercise 12 properties with and without a facies bias
- Property Modeling Workflow
 - Blocking (upscaling) well logs to geocellular grid
 - o Data Analysis of blocked well properties
 - Data preparation
 - o Analyzing trends
 - Property correlation
 - o Transforming blocked well data
 - o Variograms
- Deterministic methods (description, uses)
 - o Interpolation
 - Trend modeling

- Geostatistical Methods
 - Kriging (prediction)
 - o Stochastic Simulation, co-simulation, co-located co-simulation
 - Modeling Water Saturation
 - Sw (prior to production), Swir (irreducible)
 - Using functions (j-function, user-defined, hard wired)
- Scale and history behind geostatistical modeling

Selecting Realizations and Upscaling

- Recap of course topics to date
- Ranking realizations
 - Deterministic vs. stochastic modeling
 - Randomness in facies and property arrays
 - Upscaling as necessary evil CPU runtime constraint
- Selecting representative realizations
 - Ranking is a fit-for-purpose operation
 - What is held constant? What is allowed to vary?
 - o Ranking criteria
 - Volume (net rock volume, pore volume, HCPV, ...)
 - Connectivity (connected PV, facies, ...
 - Dynamic (simple streamline breakthrough times)
- ▲ Exercise 13 Excel spreadsheet picking the P50
 - Upscaling Geomodel Properties for Simulation
 - o Upscaling Philosophy and Goals
 - Value of the Downscaled Geocellular grid
 - General upscaling workflow
 - Wireline Logs-to-Blocked Cells
 - Blocked Cells-to-Geocellular Grid
 - Geocellular Grid-to-Simulation Grid
 - Methods for upscaling different properties
 - Discrete (facies)
 - Averaging methods (porosity, k, NTG, Sw)
 - Additional method for upscaling permeability (diagonal tensor)
 - Horizontal vs. layer-based averaging
 - Upscaling Issues & Problems